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THE BOX METHOD FOR LINEAR PROGRAMMING:

PART II - TREATMENT OF PROBLEMS IN STANDARD
FORM WITH EXPLICITLY BOUNDED VARIABLES

by Karel ZIKAN and Richard W. COTTLE

1. Introduction.

The Box Method is a new interior-point algorithm for linear programming that deals with

linear programs whose constraints are all linear inequalities. [See Zikan and Cottle (1987,

Algorithm I) .] Hence, from the standpoint of (primal) problems presented in what Dantzig

(1963, p. 86) calls "standard form" (i.e., equality constraints, nonnegative variables), the
Box Method operates on the dual problem; in this sense it is a dual method.

Since linear programming problems with explicit upper (and lower) bound constraints

are very common, a practical linear programming algorithm must be able to treat them as

easily as the Simplex Method does. This report aims to accomplish for the Box Method
what Dantzig (1955) did for the Simplex Method: to produce an efficient variant of the

algorithm for handling problems with (explicit) upper bounds on the variables. The ex-
plicitly bounded variables are assumed to occur in a primal problem having standard form,

although the algorithm will solve its dual. Like the Simplex Method, the variant presented
here solves the problem almost as efficiently as if the upper bounds were not present. The
increases in problem size and computational effort are very small.

Specifically, it will be shown in this paper how a crucial aspect of the Box Method
can take advantage of the special structure of the dual of a linear program in standard

form with explicit upper bounds on the variables. The key step in the Box Method is
the determination of a minimum-weight basis corresponding to an interior feasible iterate.

(This is also called the combinatorial or matroidal problem.) Minimum-weight bases arc
used in constructing the "boxes" over which the algorithm's direction-finding subproblems
are solved. Since the other algorithmic effects are insignificant, only matters related to the 0

minimum-weight basis will be discussed. An important consequence of the results presented

here is that any efficient scheme pertaining to (primal) problems without explicit upper

bounds on the variables can be extended to the bounded-variable case. This point will be
illustrated in the sequel to this report where the Box Method will be specialized to the es

important class of (linear) minimum cost flow problems.
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2. Block formulation.

Consider the linear program

ze T(1.1)

subject to ATyi= c (1.2)

05 _ < u (1.3)

where ATis an nxm matrix with linearly independent rows. Accordingly, rank AT = n < m.
After slack variables are inserted in (1), the constraint matrix becomes

the objective function vector and right-hand side vector become, respectively,

Fr=(b T ,O) and a= 0)

It is immediate that AT is an (n + m) x 2m matrix of full rank. The purpose of an upper-
bounding technique is to avoid using such a potentially large matrix and to work instead

with AT itself.

Now assume that the columns of the matrix AT are "weighted" as in the Box Method.'

This means that to each column of AT is associated a positive real number, its weight.
How the weights are assigned is not important at the moment. Given the weight vector,
w, the first problem is to find a minimum-weight basis consisting of columns of the matrix
AT and then an appropriate factoriuation. A minimum-weight basis is a maximal set of
linearly independent columns for which the sum of the corresponding weights is minimum.
It will be shown that solving this matroidal problem MP(AT, w) can be accomplished with
very little effort beyond what is needed to do the analogous job for AT. FUrthermore, the

structure of a minimum-weight basis facilitates solving the two equations for which the Box
Method requires solutions.

3. Theory.

The propositions and corollaries of this section provide the theoretical underpinnings of the
algorithmic developments that follow. The results proceed from the natural (and obvious)
pairing between the columns of the (n + m) x 2m matrix AT, namely column i corresponds
to column m + i. Therefore, let

i -i0= m+i i =1,...,m. (2)
Ine Bm Method, w stated, would deal with A (rather than AT) and hence the rows would be weighted.
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The first result is for matrices of more general type than AT

Proposition 1. Let M be a k x I matrix having no column of zeros. Assume B and D are

k x k invertible and I x I invertible diagonal matrices, respectively. Given a fixed I-vector
of weights, to, the matroidal problems associated with the matrices M and M = BMD are

solved by the same set of indices.

Proof. The matrices M and BMD have exactly the same sets of linearly independent

columns. That is, if E denotes a nonempty index set drawn from (1,...,t), then M.E has
linearly independent columns if and only if M.S has linearly independent columns. Since
the two matroidal problems are defined in terms of the same weight vector, w, it follows

that the greedy algorithm will make the same column choices in each problem, thereby

producing the same index set as solution. N

Corollary 1. Assume that the matrix AT and the vector of weights, wo, are fixed. Then the

same set of basic indices solves the matroidal problem for every matrix having the block

fo r m A(

B BD)

where B is any m x m invertible matrix and D is an invertible diagonal matrix of the same

order.

Proof. In view of Proposition 1, it suffices to note that a matrix of the form (3) can be
brought to the "canonical form" (2) through multiplication on the left by0)

0 B - ) (4)

and on the right by

o , .(5) -"

In the case of (4), the identity matrix is of order n whereas in (5) it is of order m. U

Remark. Assumption (A3) of the Box Method ordinarily calls for some (row) scaling in
the A. Accordingly, one is required to solve matroidal problems in which the matrices have

the block form
D 0 ,(6)

but such matrices are easily reduced to the form (2).
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Corollary 2. Assume the matrix AT and the vector of weights, w, are fixed. Then the

same set of basic indices solves all matroidal problems for matrices of the form

AT 0 (7)( , D D2 )()
where D, and D2 are nonsirgular diagonal matrices of order m.

Proof. Obvious. U

Remark. A special case of Corollary 2 is that in which D, and D2 are (possibly distinct)

"signed identity matrices" (i.e., their diagonal elements are ±1.)

Tie-breaking mumptlon. In order to avoid clumsiness in the wording of the following
results, it will be assumed that ties are broken according to an arbitrary-but fixed-rule.

This being settled, no special consideration need be given to ties.

Proposition 2. From each pair of dices (i,i'), at least one index, namely the one with

the smaller associated weight, must be selected when the greedy algorithm is applied to

the matroidal problem associated with AT

Proof. Given the special structure of the matrix, the column i' can not be linearly depen-

dent on previously selected columns unles its "mate", i, has already been selected. The
same holds for column i. Since the greedy algorithm considers the columns according to

increasing order of their weights, the asertion readily follows. U

Proposition 3. All bases, i.e., maximal linearly independent sets of columns, in the matrix
AT contain exactly n (i, ') pairs and m - n single elements from the remaining (i, i') pairs.

Proof. The rank of AT is n + m, hence this is number of columns in any maximal linearly
independent set. Let E denote the set of indices of such a set of columns. There are m pairs

of indices (i, i'), and E must contain at least one representative of each pair. (Otherwise,

the corresponding matrix would contain a row of zeros and hence would not consist of

linearly independent columns.) Assume these m indices have been identified. No matter

how the other n indices are chosen, their mates will necessarily belong to E. After this
pairing is established, the there must remain m - n among the original m elements for

which E contains no mate; these are the single elements. U

The idea is illustrated by the matrix(AT A4 0 0 \
(D), 0 (D2)

0 (DI) 2  0 (D 2)2

4
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in which AT denotes a nonsingular n x n matrix; for i - 1, 2, (Di), and (Di)2 denote
nonsingular diagonal matrices of orders n and m - n, respectively. In the present case,
the pairs of indices would be (1,1'),...,(n,n'); this corresponds to the fact using AT to
cover the first n rows makes it necessary for (D2 ), to cover the next n rows. The remaining
rows must be covered by columns drawn in a "complementary" way-that is, exactly one

of i, i'-from the matrices (D 1 )2 and (D2 )2.

Definition. Given w E R , let tb E R ' be defined by the relations

i= max {W,,w.+,l, 6m+ = rain {tit.+i). (8)

The following result pertains to the selection of a basis in accordance with the associated

matroidal problem.

Proposition 4. For a fixed matrix AT the solution E(w) of the matroidal problem

MP(AT, w) associated with the weight-vector w and the solution E(tb) of the matroida/

problem MP(AT, i) associated with with weight-vector tb contain the same set of pairs of
indices.

Proof. Consider the problem MP(ATI W) associated with the matrix AT Assume w 6 6,
for otherwise there is nothing to prove. Define the set

U- = i E {1,...,m) : t, > to,. )

Let i E U be arbitrary, and perform the following sequence of operations:

1. Multiply AT on the left by the elementary matrix that corresponds to a Gauss-Jordan
pivot on the element in row n + i and column i, that is, Ar+j'. (Cf. Proposition 1:
left multiplication by nonsingular B.)

I
2. Change the sign of column i' = m + i. (Cf. Proposition 1: right multiplication by a

nonsingular diagonal matrix.)

3. Interchange columns i and i' and also interchange the corresponding pair of weights.
(Otherwise, the matroidal problems are not the same. Note that a-nondiagonal-
permutation matrix is being applied on the right!)

4. Bring the matrix (which has the form (7) with signed identity matrices) to the form

(2). (Cf. Corollary 2.)

Now the structure of the matrix is the same as in the beginning except for the roles of
the indices i and i' which have been interchanged. Repeat the same procedure for all i E U.

5
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When the process is complete, the original matroidal problem MP(AT, w) will have been
transformed into the canonical format of the matroidal problem MP(AT, eb). The difference

is that for each i E U, the column in the i position now bears the name i and vice versa.

Therefore, for each i e U, i E E(w) if and only if ' E E(tb), and i' E E(w) if and only if
i E E(t^). Likewise, for each i 0 U, i E E(w) if and only if i E E(tb), and i' E E(w) if and

only if i' E E(tb). Thus, E(w) and E(ti) contain the same index pairs. U

Corollary 3. To solve the matroidal problem MP(AT, w), it suffices to solve MP(AT, t)

where 6 denotes the first m components of the vector 6.

Proof. Obvious. U

Example. Suppose

AT= 5 2 8 andw=(5,8,6,9,4,7)1

so that m = 3 and n = 2. Thus,

tb = (9,8,7,5,4,6) and U = {1,3}.

To solve the matroidal problem MP(A T , w) one must select 5 linearly independent columns

from the matrix AT for which the sum of the corresponding weights is as small as possible.

The data can be arranged in tabular form as follows:

1 2 3 1' 2' 3' -Indices
5 8 6 9 4 7 .- Weight vector w
523 0 0 0
124 0 0 0
1 o o 1 o o A._ T

0 10 0 1 0
1 01 0 0 1

The transformation process described in Proposition 4 ends with the table

1' 2 3' 1 2' 3 -- Indices
9 8 7 5 4 6 4-Weight vectortb
523000
1 2 4 0 0 0
i o o 1 o o A-- ,T

0 1 0 0 1 0
10 0 1 0 0 1

6



The solution to MP(AT, w) is

E(w) = (2,3, 1,2', 3).

By contrast, the matroidal problem MP(A' , 6) is expressed by the table

1 2 3 1' 2' 3' 4-Indices
9 8 7 5 4 6 4-Weightvectortb
523 0 0 0124000
100 41 0 0 _

0 10 0 1 0
1 01 0 0 1

which only differs from the preceding table in the locations of the primes on the indices
(i.e., the columns labels). The solution of MP(AT, tb) is obviously

E(wi) = (2,3,1',2, V).

Proposition 2 asserts that for every i = 1,. .. m, the index of the smaller weight wi,w1
belongs to E(w). The definition of tb implies that i' E E(tZ) for every i, and then focuses

attention on solving MP(AT, 6) where i = -- for i - 1,..., m.

4. Algorithm.

As seen above, the solution set E(w) contains n pairs of indices (i, ') and m - n other
elements, one from each remaining (i, i') pair, namely the one corresponding to the smaller
weight. Accordingly, the set E(w) has a natural partitioning into the disjoint union of four
subsets: D, D', S, and S'. The following relationships hold.

i) D and S are subsets of {,...,m);

ii) D' and S' are subsets of {1',...,m');

iii) i E D if and only if i' ED';

iv) D and D' each contain n elements;

v) S and S' may each be empty, but their union contains exactly m - n elements.

7



procedure upper bounds rin-weight basis

begin

S 0 0; (comment: S is the set of single i's selected)
S' -- 0; (comment: S' is the set of single i"s selected)
D - 0; (comment: D is the set of i's selected for pairs)

4- 0; (comment: D' is the set of i"s selected for pairs)

for i = 1,m do

begin

if (wi < w,) then

tzDi 4-W,
s,-su{i}

else

S' S,'U{i'}
endif

end

(comment: This completes the selection of indices according to Proposition 2.)
begin

solve MP(AT I,) to get D and D'; (comment: Corollary 3.)
S -S\D
S' S' \ D'

return S, S', D, and D'

end

end

Thus, as a result of solving MP(AT, w), one obtains the index set E(w) and its parti-
tioning:

E(w) = D U D'U S u S'.

Indeed, as will be seen in the next section, it is useful to partition the full sets of indices

as follows:

{,...,m}=DUSUN and {l',...,m')=D'US'UN'.

The elements of N and N' are, of course, the indices of nonbasic columns of AT There is
a pairing between the elements of S and those of N'. Likewise, there is a pairing between
the elements of S' and those of N.

8
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In the example used in Section 3, these six sets are

D {2,3), D- 12',3T),
S, -- M 1, , ---
N =1, N =1.

5. Solving systems of equations.

Each iteration of the Bcac Method entails the solution of a box problem, each of which,

in turn, calls for the solution of two systems of equations stated in terms of the current

minimum-weight basis. [See (12) and (13) in Zikan and Cottle (1987).] This section will

discuss how to treat these systems when the original primal problem is of the bounded

variable type.

In general, let BT denote the minimum-weight basis (A').E(.). The first system of

equations to be solved is of the form

BTE =, (9)

where

U

The second system of equations to be solved is of the form

z= i (10)

where , is the solution to a simplified box problem [see (14) in Zikan and Cottle (1987)]

that is defined in terms of Z. The solution z of (10) above is the solution to the box problem
corresponding to the current minimum-weight basis.

Up to a rearrangement of rows and columns, the matrix AT can be written in the form(AT.D AT s AT.N 0 0 0
ID 0 0 I 0 0
0 IS 0 0 IN' 01
0 0 IN 0 0 IS'J

After further rearrangement, it follows that
9'



0 0 is o0 D 0 is,

Note that the submatrix ATD of AT is the minimum-weight basis matrix that would

have been obtained if there had not been any explicit upper bounds. From the (essentially

block triangular) structure of BTI it is evident that solving systems of equations like those 4%

indicated in (9) and (10) requires little more work or storage than than solving equations

(12) and (13) in Zikan and Cottle (1987).

To see this more clearly, consider a system of the form (9). In more detail the system

can be written as

AcaD 0 AT.5  0 ED (D

ID TD' 0 0 -D1 - -D' (11)
0 0 is 0 zs Cs "

0 0 0 Is, es, es,

Solving (11) can be done by sequentially solving the following set of four smaller systems:

Is,2s, = es'; (12)

IsEs = es; (13)

AT.DD = .D ATSS; (14)

ID'CD, = cD' - IDCD. (15)

In block form, (10) becomes

AD- ID 0  0 (ZD \ iD
0 ID' 0 0 z, , .()

As. 0 Is 0 zs is (16)

0 0 0 Is, zs, is,

the technique for solving it is analogous to that for (11), and will not be spelled out.

Remark. Due to the possible need for scaling, it may happen that some of the blocks

identified here as identity matrices are actually nonsingular diagonal matrices. It is clear

that if these conditions obtain, there is very little extra storage or computational effort

required. The only significant work stems from equation (14).

10 e
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The procedure presented here can be modified to handle the case where some, but not

all of the variables are explicitly upper bounded. The details are easily worked out and

hence are omitted.
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A crucial aspect of the Box Method for linear programming is the finding of a "minimum-weight
basis" 'corresponding, to a given interior feasible point. This subproblem leads to the formation of

the "Box Problem," a special linear program having a closed form solution which provides the search
direction at the current iteration. Finding a minimum-weight basis is a matroidal (or, combinatorial)
optimization problem that can be handled by a greedy algorithm. This paper suggests a way of efficiently
solving the minimum-weight basis problem in cases where the (primal, standard form) linear program
contains explicitly bounded variables. It is shown that the main part of the task requires almost no more

computational effort or storage space than does a problem of the same size without upper bounded "

variables. While this result is believed to be valuable in its own right, there is additional benefit to

be gained in applications where the finding of a minimum-weight basis (for a linear program without
explicit upper bounds on its variables) is done by a special greedy algorithm. Such is the case with

minimum-cost network flow problems which will be discussed in Part III of this series.O
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